
Physics of the Monopoles in QCD

Valentine I. Zakharov
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Abstract. We discuss implications of the recent measurements of the non-Abelian
action density associated with the monopoles condensed in the confining phase of gluo-
dynamics. The radius of the monopole determined in terms of the action was found to
be small numerically. As far as the condensation of the monopoles is described in terms
of a scalar field, a fine tuning is then implied. In other words, a hierarchy exists between
the self energy of the monopole and the temperature of the confinement-deconfinement
phase transition. The ratio of the two scales is no less than a factor of 10. Moreover,
we argue that the hierarchy scale can well eventually extend to a few hundred GeV on
the ultraviolet side. The corresponding phenomenology is discussed, mostly within the
polymer picture of the monopole condensation.

1 Introduction

The monopole condensation is one of the most favored mechanisms [1] of the
confinement, for review see, e.g., [2]. In the field theoretical language, one usually
thinks in terms of a Higgs-type model:

Seff =
∫
d4x

(|Dµφ|2 + 1
4
F 2
µν + V (|φ|2)) (1)

where φ is a scalar field with a non-zero magnetic charge, Fµν is the field strength
tensor constructed on the dual-gluon field Bµ,Dµ is the covariant derivative with
respect to the dual gluon. Finally, V (|φ|2) is the potential energy ensuring that
〈φ〉 �= 0 in the vacuum. Relation of the “effective” fields φ,Bµ to the fundamental
QCD fields is one of the basic problems of the approach considered but here we
would simply refer the reader to [3] for further discussion of this problem. At
this moment, it suffices to say that the “dual-superconductor” mechanism of
confinement assumes formation of an Abrikosov-type tube between the heavy
quarks introduced into the vacuum via the Wilson loop while the tube itself
is a classical solution of the equations of motion corresponding to the effective
Lagrangian (1).

By introducing scalar fields, one opens a door to the standard questions on
the consistency, on the quantum level, of a λφ4 theory. Here, we mean primarily
the problem of the quadratic divergence in the scalar mass. At first sight, these
problems are not serious in our case since (1) apparently represents an effective
theory presumably valid for a limited range of mass scales.

However, if we ask ourselves, what are the actual limitations on the use of
the effective theory (1) we should admit that there is no way at the moment to
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answer this question on pure theoretical grounds and we should turn instead to
the experimental data, that is lattice measurements. This lack of understanding
concerns first of all the nature of the non-perturbative field configurations that
are defined as monopoles. First, it is not clear apriori which U(1) subgroup of
the SU(2) 1 is to be picked up for the classification of the monopoles. Even if we
make this choice on pure pragmatic basis and concentrate on the most successful
scheme of the monopoles in the maximal Abelian projection [2] we still get very
little understanding of the field configurations underlying the objects defined as
monopoles in this projection, for discussion see, e.g., [4]. In particular, nothing
can be said on the size of the monopole which presumably limits application of
(1) on the ultraviolet side.

Direct measurements of the monopole size were reported recently [5] and
brought an unexpectedly small value of the monopole radius:

Rmon ≈ 0.06 fm, (2)

where the monopole radius is defined here in terms of the full non-Abelian action
associated with the monopole and not in terms of the projected action. If we
compare the radius (2) with the temperature of the confinement-deconfinement
transition:

Tdeconf ≈ 300 MeV (3)

then we would come to the conclusion that there are different mass scales co-
existing within the effective scalar-field theory (1). And the question, how this
mass hierarchy is maintained is becoming legitimate.

Although comparison of (2) and (3) is instructive by itself, we will argue
that the actual hierarchy mass scale can be much higher on the ultraviolet side.
Namely, we will emphasize later that even at the size (2) the monopoles are very
“hot”, i.e. have action comparable to the action of the zero-point fluctuations. For
physical interpretation, it is natural to understand by the radius such distances
where the non-perturbative fields die away on the scale of pure perturbative
fluctuations. And this radius is to be considerably smaller than (2).

Also, estimate (2) means that the asymptotic freedom is not yet reached at
quite small distances and the question arises as to how reconcile this observation
with such phenomena as the precocious scaling.

We cannot claim at all understanding answers to these questions but feel that
it is important to start discussing them. Our approach is mostly phenomeno-
logical and we are trying to formulate which measurements could help to find
answers to the puzzles outlined above. The theoretical framework which we are
using is mainly the polymer approach to the scalar field theory, see, e.g., [6,7,8].

1 for simplicity we will confine ourselves to the case of SU(2) as the color group.
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2 Monopole Condensation: Overview of the Theory

2.1 Compact U(1)

The show case of the monopole condensation is the compact U(1) [9]. The crucial
role of the compactness is to ensure that the Dirac string does not cost energy
(for a review see, e.g., [4]). The monopole self energy reduces then to the energy
associated with the radial magnetic field B. The self energy is readily seen to
diverge linearly in the ultraviolet:

Mmon(a) =
1
8π

∫
B2d3r ∼ c

8e2
1
a
, (4)

where c is a constant, a is the lattice spacing, e is the electric charge and the
magnetic charge is 2 gm = 1/2e. Thus, the monopoles are infinitely heavy and,
at first sight, this precludes any condensation since the probability to find a
monopole trajectory of the length L is suppressed as

exp(−S) = exp
(

− c

e2
· L
a

)
. (5)

Note that the constant c depends on the details of the lattice regularization but
can be found explicitly in any particular case.

However, there is an exponentially large enhancement factor due to the en-
tropy. Namely, trajectory of the length L can be realized on a cubic lattice in
NL = 7L/a various ways. Indeed, the monopole occupies center of a cube and the
trajectory consists of L/a steps. At each step the trajectory can be continued
to an adjacent cube. In four dimensions there are 8 such cubes. However, one
of them has to be excluded since the monopole trajectory is non-backtracking.
Thus the entropy factor,

NL = exp
(
ln7 · L

a

)
, (6)

cancels the suppression due to the action (5) if the coupling e2 satisfies the
condition

e2crit = c/ln7 ≈ 1 , (7)

where we quote the numerical value of e2crit for the Wilson action and cubic
lattice. At e2crit any monopole trajectory length L is allowed and the monopoles
condense.

This simple theory works within about one percent accuracy in terms of e2crit
[10]. Note that the energy-entropy balance above does not account for interaction
with the neighboring monopoles.
2 The notation g is reserved for the non-Abelian coupling, the magnetic coupling is
denoted as gm.
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2.2 Monopole Cluster in the Field-Theoretical Language

The derivation of the previous subsection implies that the monopole conden-
sation occurs when the monopole action is ultraviolet divergent. On the other
hand, the onset of the condensation in the standard field theoretical language
corresponds to the zero mass of the magnetically charged field φ. It is important
to emphasize that this apparent mismatch between the two languages is not
specific for the monopoles at all. Actually, there is a general kinematic relation
between the physical mass of a scalar field m2

phys and the mass M defined in
terms of the (Euclidean) action,M ≡ S/L where L is the length of the trajectory
and S is the corresponding action 3:

m2
phys · a ≈ M − ln7

a
, (8)

where terms of higher order in ma are omitted. Here by m2
phys we understand

the mass entering the propagator of a free particle,

D(p2,m2
phys) ∼ (p2 +m2

phys)
−1 ,

where p2 is either Euclidean or Minkowskian momentum squared.
In view of the crucial role of the (8) for our discussion, let us reiterate the

statement. We consider propagator of a free scalar particle in terms of the path
integral:

D(xi, xf ) ∼ Σpathsexp( − Scl(path)), (9)

where for the classical action associated with the path we would like to substitute
simply the action of a point-like classical particle, Scl = M · L where M is the
mass of the particle and L is the length of the path. Then we learn that there is
no such representation (with replacement of Scl by iScl)) for the propagator of
a relativistic particle in the Minkowski space because of the backward-in-time
motions 4. However, in the Euclidean space the representation (9) works. The
physical mass is, however, gets renormalized compared to M according to (8).

Derivation of the Eq (8) is in textbooks 5 , see, e.g., [12]. The central point
is that the action for a point-like particle in the Euclidean space looks exactly
the same as that of a non-interacting polymer with a non-vanishing chemical
potential for the constituent atoms. The transition from the polymer to the field
theoretical language is common in the statistical physics (see, e.g., [13]). The
first applications to the monopole physics are due to the authors in [7]. For the
3 It is worth emphasizing that the results of the lattice measurements are commonly
expressed in terms of Higgs masses and interaction constants, see [11]. However,
these masses are obtained without subtracting the ln7 term (compare Eq (8)) and,
to our belief, are not the physical mass for this reason. Where by the physical masses
we understand the masses in the continuum limit. In particular, the physical masses
determine the shape of the Abrikosov-like string confining the heavy quarks.

4 I am indebted to L. Stodolsky for an illuminating discussions on this topic.
5 Actually, one finds mostly ln2D ≡ ln8 instead of ln7. We do think that ln7 is the
correct number but in fact this difference is not important for further discussion.
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sake of completeness we reproduce here the main points crucial for our discussion
later. Mostly, we follow the second paper in [7].

The scalar particle trajectory represented as a random walk and the corre-
sponding partition function is:

Z =
∫

d4 x

∞∑
N=1

1
N
e−µN ZN (x, x) , (10)

where µ is the chemical potential and ZN (x0, xf ) is the partition function of a
polymer broken into N segments:

ZN (x0, xf ) =
[N−1∏
i=1

∫
d4xi

] N∏
i=1

[
δ(|xi − xi−1| − a)

2π2a3

]
exp

{
−

N∑
i=1

gV (xi)
}
. (11)

This partition function represents a summation over all atoms of the polymer
weighted by the Boltzmann factors. The δ–functions in (11) ensure that each
bond in the polymer has length a. The starting point of the polymer (11) is x0
and the ending point is xf ≡ xN .

In the limit a → 0 the partition function (11) can be treated analogously to a
Feynman integral. The crucial step is the coarse–graining: the N–sized polymer
is divided into m units by n atoms (N = mn), and the limit is considered when
both m and n are large while a and

√
na are small. We get,

(ν+1)n−1∏
i=νn

1
2π2a3 δ(|xi − xi+1| − a) →

( 2
πna2

)2

exp
{

− 2
na2 (x(ν+1)n − xνn)

2
}
,

(12)
where the index i, i = νn · · · (ν + 1)n − 1, labels the atoms in νth unit. The
polymer partition function becomes [7]:

ZN (x0, xf ) = const ·
[m−1∏
ν=1

d4x
][( 2

πna2

)2m

exp
{ m∑
ν=1

(xν − xν−1)2

na2

}]

· exp
{

−
m∑
ν=1

n(µ+ V (xν))
}
. (13)

The xi’s have been re-labeled so that xν is the average value of x in at the
coarser cell. Using the variables:

s =
1
8
na2ν, τ =

1
8
a2N , m2

0 =
8µ
a2 , (14)

one can rewrite the partition function (10) as

Z = const ·
∞∫
0

dτ
τ

∫
x(0)=x(τ)=x

Dx exp

{
−

τ∫
0

[1
4
ẋ2
µ(s) +m2

0 + g0V (x(s))
]
ds

}
.

(15)
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The next step is to rewrite the integral over trajectories x(τ) as the standard
path integral representation for a free scalar field. For us it is important only that
the m2

0 term in (15) is becoming the standard mass term in the field theoretical
language:

Z =
∞∑
M=0

1
M !

ZM

= const ·
∫
Dφ exp

{
−

∫
d4x

[
(∂µφ)2 +m2

0 φ
2 + g0V (x)φ2

]}
. (16)

The whole machinery can be easily generalized to the case of charged particles
(monopoles) with Coulomb-like interactions.

2.3 Monopole Condensation in Non-Abelian Case: Expectations

If we try to adjust the lessons from the compact U(1) to the non-Abelian case
then the good news is that, indeed, all the U(1) subgroups of the color SU(2)
are compact. Moreover, dynamics of any subgroup of the SU(2) is governed by
the same running coupling g2(r). Thus, we could hope that the following simple
picture might work: if the lattice spacing a is small we would not see monopoles
because g2(a) falls below e2crit. However, going to a coarser lattice a la Wilson
we come to the point where g2(a2) ≈ e2crit. Then we apply the entropy-energy
balance which works so well in case of the compact U(1) and conclude that the
monopoles of a critical size acrit such that g2(acrit) ∼ 1 condense in the QCD
vacuum.

This simple picture is open, however, to painful questions. First, monopoles
are defined topologically within a U(1) subgroup 6. However, it is only the U(1)
invariant action which has a non-vanishing minimum for a U(1) topologically
non-trivial object. There is no relation, generally speaking, between the full non-
Abelian action and a U(1)-subgroup topology. For illustrations of this general
rule see [3].

Therefore, there is no reason, at least at first sight, for the saturation of
the functional integral at the classical solution with infinite action, see (4). This
observation brings serious doubts on the validity of our simple dynamical picture.

3 Monopoles, as They Are Seen

3.1 Monopole Dominance

On the background of the theoretical turmoil, the data on the monopoles indicate
a very simple and solid picture. We will constrain ourselves to the monopoles
in the so called Maximal Abelian gauge and the related projection (MAP). We
6 Note that a SU(2)-invariant definition of the monopoles is also possible [14]. However,
their dynamical characteristics have not been measured yet and such monopoles are
not considered here.
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just mention some facts, a review and further references can be found, e.g., in
[2].

Since the monopoles of the non-Abelian theory are expected to actually be
U(1) objects one first uses the gauge freedom to bring the non-Abelian fields as
close to the Abelian ones as possible. The gauge is defined by maximization of
a functional which in the continuum limit corresponds to R(Â) where

R(Â) = −
∫
d4x

[
(A1
µ)

2 + (A2
µ)

2] (17)

where 1, 2 are color indices.
As the next step, one projects the non-Abelian fields generated on the lattice

into their Abelian part, essentially, by putting A1,2 ≡ 0. In this Abelian pro-
jection one defines the monopole currents kµ for each field configuration. Note
that the original configurations which are used for a search of the monopoles are
generated within the full non-Abelian theory. Upon performing the projection
one can introduce also the corresponding Abelian, or projected action.

The relation of the monopoles to the confinement is revealed through evalua-
tion of the Wilson loop for the quarks in the fundamental representation. Namely
it turns out, first, that the string tension in the Abelian projection is close to
the string tension in the original SU(2) theory [15]:

σU(1) ≈ σSU(2) . (18)

Moreover, one can define also the string tension which arises due to the monopoles
alone. To this end, one calculates the field created by a monopole current:

Amonµ (x) =
1
2
εµναβ

∑
y

∆−1(x− y) ∂νmαβ [y; k] , (19)

where ∆−1 is the inverse Laplacian, and sums up (numerically) over the Dirac
surface, m[k], spanned on the monopole currents k. The resulting string tension
is again close to that of the un-projected theory:

σmon ≈ σSU(2) . (20)

It might worth mentioning that these basic features remain also true upon
inclusion of the dynamical fermions in SU(3) case (full lattice QCD) [16].

3.2 Gauge-Invariant Properties of the Monopoles

Despite of the apparent gauge-dependence of the monopoles introduced within
the MAP, they encode gauge-invariant information. In particular, we would men-
tion two points: scaling of the monopole density and full non-Abelian action
associated with the monopoles.

According to the measurements (see [17] and references therein) the mono-
pole density ρmon in three-dimensional volume (that is, at any given time) is
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given in the physical units. In other words, the density scales according to the
renormgroup as a quantity of dimension 3. Numerically:

ρmon = 0.65(2) (σSU(2))3/2 . (21)

One important remark is in order here. While discussing the monopole density
one should distinguish between what is sometimes called ultraviolet (UV) and
infrared (IR) clusters [18]. The infrared, or percolating cluster fills in the whole
lattice while the UV clusters are short. There is a spectrum of the UV clusters,
as a function of their length, while the percolating cluster is in a single copy. The
statement on the scaling (21) applies only to the IR cluster. We do not consider
the UV clusters in this note.

Also, upon identification of the monopoles in the Abelian projection, one can
measure the non-Abelian action associated with these monopoles. For practical
reasons, the measurements refer to the plaquettes closest to the center of the
cube containing the monopole. Since the self energy is UV divergent, it might be
a reasonable approximation. The importance of such measurements is that we
expect that it is the non-Abelian action which enters the energy-entropy balance
for the monopoles.

The results of one of the latest measurements of this type are reproduced in
Fig. 1 (see [5]).

monopoles from IR cluster

all monopoles
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Fig. 1. The average excess of the full non-Abelian action on the plaquettes closest to
the monopole, as a function of a half of the lattice spacing a/2. The data are reproduced
from the first paper in [5]

What is plotted here is the average excess of the action on the plaquettes
closest to the monopole (monopoles are positioned at centers of cubes). The ac-
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tion is the lattice units. In other words, the corresponding mass of the monopole
Mmon(a) of order 1/a if the action of order unit.

As is emphasized in [5], the IR and UVmonopoles are distinguishable through
their non-Abelian actions. For the UV monopoles the action is larger, in ac-
cordance with the fact that they do not percolate (condense). This is quite a
dramatic confirmation that the condensation of the monopoles in the Maximal
Abelian projection is driven by the full non-Abelian action, not by its projected
counterpart.

4 Fine Tuning

Let us pause here to reiterate our strategy. We are assuming that the monopole
condensation can be described within an effective Higgs-type theory like (1). In
fact, even this broad assumption can be wrong but at this time it is difficult
to suggest a framework alternative to the field theory. Next, we would like to
fix the effective theory using results of the lattice measurements. Moreover we
are interested first of all in interpreting data which can be expressed in gauge
independent way. As the first step, we will argue in this section that the data
on the monopole action [5] imply a fine tuning. By which we understand that

|Mmon(a) − ln7
a

|  Mmon(a) (22)

where Mmon(a) is the monopole self energy 7 and ln7 is of pure geometrical
origin (see (6)). Note that (22) looks similar to the fine tuning condition in the
Standard Model.

4.1 Evidence

There are a few pieces of evidence in favor of the fine tuning (22):
a) Direct measurements indicate that the excess of the action is indeed related

to the ln7, as is obvious from Fig. 1. Let us also emphasize that it is only the full
non-Abelian action which “knows” about the ln7. The Abelian projected action
is not related at all to the ln7 [5]. This illustrates once again that the dynamics
of the monopoles in MAP is driven by the total SU(2) action.

b) It is difficult to be more quantitative about the excess of the action basing
on the direct data quoted above. In particular, we should have in mind that for
finite a there are geometrical corrections to the equation (6). Indirect evidence
could be more precise. In particular, it is rather obvious that the scaling of the
monopole density (see (21)) implies:

|Mmon(a) − ln7
a

| ∼ ΛQCD (23)

7 We hope that the notations are not confusing: there are two monopole masses
being discussed. One is the standard magnetic field energy (see (4)) and the other
is what we call physical mass, m2

phys and this mass determines propagation of a free
monopole.
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so that the action per unit length of the monopole trajectory does not depend
on the lattice spacing a.

c) Also, independence on the lattice spacing of the temperature (3) of the
phase transition suggests strongly validity of (23). Indeed, the measurements at
the smallest a available, a ∼ 0.06fm, see Fig. 1, suggest

Mmon > 4 GeV, Mmon � Tdeconf , (24)

Moreover, it is well known that at the point of the phase transition the monopole
trajectories change drastically. Such a sensitivity of the monopoles to the tem-
perature is possible only if the effect of the self energy of the monopole is mainly
canceled by the entropy factor, see (23).

Also, an analysis of the data in [19] suggests that

Tdeconf ∼ d−1
mon, (25)

where dmon is the distance between the monopoles in the infrared cluster, dmon ∼
0.5fm [5]. Thus the temperature is not sensitive to our ultraviolet parameter
which is the size of the monopole.

d) Phenomenological fits suggest [11]:

Mmon ≈ MCoul
mon (a) + const, const > 0 , (26)

where by Mmon we understand the action associated with the monopole. Note
also that the Coulombic part of the mass, MCoul

mon (a) is of order 1/g
2a.

Let us recall the reader that on the theoretical side our main concern was
that there is no reason why Mmon(a) cannot drop to zero. Now we see that our
fears are not justified: the monopole self energy is even higher than it would be
in the pure Coulomb-like case! As far as we concentrate on a single monopole
there is no way to understand (26). But this is indeed numerically necessary for
the fine tuning.

Thus, the fine tuning (22) seems to be granted by the data.

4.2 The Origin of the Huge Mass Scale

We are talking actually about small distances, by all the standards of QCD.
The numerical value [5] of the size of the monopole (2) is much smaller than the
inverse temperature of the phase transition.

The radius (2) is defined in terms of the derivative from the monopole action
with respect to a, see [5]. What we would like to emphasize here is that the
actual “physical size” of the monopole can be much smaller than (2). By the
physical size Rphys we understand now the distances where the excess of the
monopole action is parametrically smaller than the action associated with the
zero-point fluctuations. It is the Rphys where the asymptotic freedom actually
reigns, not Rmon quoted in (2).

No evidence exists at the moment that reaching Rphys is in sight, see Fig.
1. Indeed, in the lattice units used in Fig. 1 the excess of the action density of
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order Λ4
QCD would look like having zero at a = 0 and approaching this zero as

a4. Having in mind the data showed in Fig 1 it is tempting to speculate that
the onset of such a behavior is still far off from the presently available lattice
spacings.

Moreover, as we will argue now it looks plausible that the Rphys is shifted to
the scale

Rphys ∼ (100 GeV )−1 . (27)

Before giving arguments in favor of (27) let us ask ourselves, why the esti-
mate (27) is difficult to accept, at least at first sight so. The reason is obvious:
one thinks usually about non-perturbative effects in quasi-classical terms, which
work in the instanton case. Thus, one assumes that the probability to find non-
perturbative effects is exponentially small at small g2(a), exp( − c/g2(a)).

But the failure of such a logic in the monopole case is evident from the case
of the compact U(1), see above. Even the monopoles with infinite (Euclidean)
action condense. Moreover, Rphys is naturally determined by the running of the
coupling which is logarithmic and can result in huge factors in the linear scale.

Let us make simple estimates. Namely, the U(1) critical coupling is well
known, e2crit ∼ 1. In the QCD case we can rewrite the condition (7) as a condition
on the Rphys. In the realistic case we have at the LEP energies E2 ∼ (100 GeV)2,
α ≈ 0.1. Then

Mphys ∼ TeV (28)

and, remarkably enough, we are getting rather the weak interactions scale than
∼ ΛQCD.

Also, the SU(2) lattice measurements typically refer to β ∼ 2.6 while our
guess about Rphys asks for measurements at β ∼ 4 which are absolutely unreal-
istic at the moment.

Thus, we come to a paradoxical conclusion that the presently available β
are too low to see dissolution of the monopoles at small distances. Moreover,
because the running of the coupling is only logarithmic the scale of of the onset
asymptotic freedom – which is defined now as the vanishing of the excess of the
monopole action compared to the zero-point-fluctuations action– can be very far
off.

It is amusing to notice 8 that in case of the SU(3) gluodynamics on the lattice
g2 = 1, or β = 6 corresponds to the lattice spacing a ≈ 0.1 fm and the scale is:

R
SU(3)
phys ∼ (2GeV)−1 .

Thus, through dedicated studies of the monopoles in the SU(3) case it is possible
to clarify whether there is a crucial change in the monopole structure at the point
g2(a) ≈ 1.

8 The observation is due to M.I. Polikarpov.
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5 Conclusions

We have argued that data are emerging which indicate that QCD, when pro-
jected onto the scalar-field theory via monopoles corresponds to a fine tuned
theory. Which is if course extremely interesting, if true, in view of the mystery
of the fine tuning in the Standard Model. The monopoles which we considered
are defined (“detected”) through the Maximal Abelian projection. However, the
mass scales which exhibit mass hierarchy are gauge independent. The scales are
provided by the SU(2) invariant action per unit length of the monopole trajec-
tory, on one hand, and by the temperature of the phase transition, on the other.
More generally, we have found that the polymer approach allows to get a new
insight into the mechanism of the monopole condensation.
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